Angin

To run where the brave dare not to go

A (Super)Model Wannabe?

Di TU Delft saya mengambil jurusan Engineering and Policy Analysis (EPA) di Fakultas Technology Policy and Management. Setiap saya cerita ke orang selalu ditanya “Jurusan macam apa itu?”. Susah-susah gampang menjawabnya. Kalau saya kasih beberapa contoh mata kuliahnya mungkin bisa memberi gambaran:

– Continuous System Modelling

– Discrete System Modelling

– Statistical Modelling

– Policy and Decision Model

– Analysis of Multi-Actor System

– Cross Cultural Management

– Economic of Innovation

Perhatikan kata-kata kunci yang saya tandai: model, actor, culture, innovation..

Pikirkan dalam waktu lima detik apa yang anda bayangkan dari empat kata kunci tersebut?

Yup, tepat sekali! Seperti yang saya juga bayangkan sebelumnya: Fashion, Milan, Paris, Naomi Campbell, Gucci, Supermodel, Arts, Artis, dsb dsb. Jadi saya memang sedang belajar untuk jadi supermodel dunia yang akan melenggak lenggok di atas catwalk dengan macho bak David Beckham atau Brad Pitt.

Of course not! Gak mungkin lah Pak Tifatul Sembiring mau ngasih saya beasiswa untuk belajar jadi model. Walau sebetulnya sih, ehm, tidak keberatan kalau diminta jadi model dan tampil di Euro Fashion Show di Milan. Kalau begitu saya ceritakan yang sebenarnya. Sebagai gambaran, berikut adalah soal-soal latihan yang harus saya kerjakan sehari-hari:

Pneumonic Plague in China

On 3 August 2009, an outbreak of pneumonic plague in north-west China was reported in themedia. The NRC Handelsblad (a Dutch quality news paper) reported the following:

The BBC reported:“A second man has died of pneumonic plague in a remote part of north-west Chinawhere a town of more than 10,000 people has been sealed off. [. . . ] Local officialsin north-western China have told the BBC that the situation is under control, and that schools and offices are open as usual. But to prevent the plague [from] spreading,the authorities have sealed off Ziketan, which has some 10,000 residents. About 10 other people inside the town have so far contracted the disease, according to statemedia. No-one is being allowed [to] leave the area, and the authorities are trying to track down people who had contact with the men who died. [. . . ] According to the WHO, pneumonic plague is the most virulent and least common form of plague. Itis caused by the same bacteria that occur in bubonic plague – the Black Death thatkilled an estimated 25 million people in Europe during the Middle Ages. But whilebubonic plague is usually transmitted by flea bites and can be treated with antibiotics,[pneumonic plague, which attacks the lungs, can spread from person to person or fromanimals to people], is easier to contract and if untreated, has a very high case-fatalityratio.”

You are asked to make an exploratory System Dynamics model of this outbreak

1. Use thefollowing assumptions: The total population of Ziketan amounted initially to 10000 citizens. Newinfections make that citizens belonging to the susceptible population become part of the infected population, which initially consists of just 1 person. The number of infections equals the product ofthe infection ratio, the contact rate, the susceptible population, and the infected fraction. Initially,the normal contact rate amounts to 50 contacts per week and the infection ratio to a staggering75% per contact. The infected fraction equals of course the infected population over the sum ofall other subpopulations. If citizens from the infected population die, they enter the statistics ofthe deceased population, else they are quarantined to recover. The recovering could be modelledsimplistically as (1−fatality ratio) ∗ infected population=recovery time. Suppose for the sake of simplicity that the average recovery time and the average decease time are both 2 days. The fatalityratio depends on the antibiotics coverage of the population which –in this poor part of China– is(initially) 0%. As indicated in the article, the fatality ratio decreases from 90% at 0% antibioticscoverage of the population to 15% at 100% antibiotics coverage of the population. Assume forthe sake of simplicity that the recovering population does not pose any threat of infection, eitherbecause they are is really quarantined or because they they are not contagious any more.1. Make a System Dynamics simulation model of a local pneumonic plague epidemics. Verifythe model.

2. Make a ‘causal loop diagram’ of this model.

3. Simulate the model using a time horizon of a month. Make graphs of the evolution of theinfections, the deaths, the recovering population, and the deceased population.

4. The outbreak of an extremely contagious deadly illness such as pneumonic plague actuallycauses the contact rate to drop (because of panick and illness).Adapt the model by closing the ‘loop’ between the infected fraction and the contact rate.Create a function impact of the infected fraction on the contact rate that, multiplied with the aforementioned normal contact rate (the one without epidemic and panick), gives theeffective contact rate. The function takes a value of 1 at an infected fraction of 0% 1, of 0.5 at an infected fraction of 10%, of 0.25 at an infected fraction of 20%, 0.125 at an infectedfraction of 30%, of 0.0625 at an infected fraction of 40% , of 0.03125 at an infected fractionof 50%, and so on. Simulate the model over a span of 1 month. Make graphs of the evolution of the infections, the deaths, the recovering population, and the deceased population. Does this reduction of the natural contact rate the desired effect?

5. Validate your model. Propose 2 validation tests (except sensitivity analysis – see nex tquestion), perform them, and briefly describe the results/conclusions.

6. Test (not too extensively) the sensitivity of the model for small changes in the normal contactrate, the impact of the infected fraction on the contact rate, and one other variable of choice.Briefly describe your conclusions.

7. Suppose that the antibiotics coverage of the population increases linearly in de first week ofthe epidemics from 0% to 100%. What is the consequence on the deceased population?

8. Could the epidemics be stopped? Explain based on the structure of the model.

(NB: Silakan baca sekilas aja, saya juga pusing bacanya, hoho)

Saya sama sekali gak keberatan kalau anda berpikir: “Oh, jadi kamu ngambil jurusan Public Health/ Kesehatan Masyarakat ya? Oh memang bisa ya S1 nya elektro terus S2 nya di fakultas kedokteran? Atau gara-gara kamu nikah sama dokter ya jadi bisa? Wah enak dong, saya juga ada cita-cita jadi dokter nih tapi gak kesampaian malah jadi dokter mesin, kalau gitu saya cari istri dokter deh biar saya bisa S2 nya di kedokteran.. Hohoho

Saya memaklumi saja kalau begitu. Yang pasti ini lebih karena obsesif impulsif anda kepada (seorang) dokter. Jadi saya juga bukan kuliah S2 di kedokteran.

Kasus di atas hanyalah bagian dari proses latihan saya sebagai seorang Policy Analyst yang handal. Tujuan dari jurusan saya adalah melahirkan para Policy Analyst (calon-calon Policy Maker) yang mempunyai kemampuan analisis suatu permasalahan yang kompleks (multi kepentingan, multi dimensional, lintas sektoral) serta melakukan sintesis bagaimana kebijakan yang bisa mengakomodir kepentingan setiap stakeholder secara optimal. Atau jika orientasinya adalah satu goal (tujuan), maka bagaimana kebijakan terbaik yang bisa mencapainya, kira-kira demikian. Makanya sehari-hari saya selalu dilatih dengan berbagai macam persoalan (mulai dari kebijakan perdagangan, energi, industri, pariwisata, kesehatan, sampai pendidikan) untuk melakukan mental model, uji model, serta sintesis kebijakan. Selain kemampuan modelling saya juga dibekali dengan dasar-dasar ilmu ekonomi dan politik, project management, serta tak kalah penting: skill presentasi dan menulis (karena jika enjiner betulan membuat sesuatu, maka seorang policy engineer sedang membahas sesuatu, hehe).

Nah kira-kira kaya begini mental model yang saya bikin, berupa closed loop diagram. Kali ini temanya menarik, tentang “Bom Syahid di Palestina”

Lalu apa bedanya jurusan saya dengan fakultas ekonomi atau school of public policy macam Harvard Kennedy School of Government/ Lee Kuan Yew NUS? Saya juga tidak tahu karena belum pernah ke sana. Tapi denger-denger sih di kita lebih kuat di analisis kuantitatif dan “policy engineering” nya. Kalau bicara teori-teori sosial-ekonomi jelas kalah lah. Selain itu kita kuat di domain kebijakan yang berhubungan dengan teknologi. Ada empat domain (perminatan) yang bisa dipilih oleh mahasiswa EPA: Energy and Industry, ICT (Information and Communication Technology), Transport and Logistic, serta Construction and Spacial Planning. Saya sendiri nampaknya tertarik ke Energy and Industry.

Jadi kalau suatu saat ada yang nanya ke saya lagi “jurusan macam apa itu?” saya cukup tag yang bersangkutan di note ini.

Delft, 13 sep-12

Lagi stuck bikin model, nulis note jadi pelarian, hehe

One comment on “A (Super)Model Wannabe?

  1. s ari (@sari57491742)
    January 5, 2013

    wa pusing juga pak…heheheh..tetapi menantang saya utk semakin berusaha…

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Information

This entry was posted on September 16, 2012 by in Politik dan Ekonomi and tagged , , , .
%d bloggers like this: